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Objectives: Inertial Measurement Units (IMUs) are a valid alternative to optical tracking systems for 
human motion capture, but they are subject to several disturbances that limit their accuracy. We aim 
to improve the accuracy of elbow joint angle estimation from IMU measurements by introducing a novel 
postprocessing algorithm that uses anatomical constraints and does not require any prior calibration or 
knowledge of anthropometric parameters.
Materials and Methods: We propose a new error model that addresses sensor misalignment and fusion 
errors. We use an error state extended Kalman filter (ESEKF) with state constraints to integrate the 
anatomical constraints. We validate the proposed algorithm by testing it in different scenarios and 
comparing it with a state-of-the-art optical tracking system.
Results: The research results highlight the superior performance of the proposed method compared with 
existing techniques. The study demonstrates a significant reduction in errors, particularly in complex arm 
movements and under strong external disturbances. The results obtained in the three different tested 
scenarios underscore the robustness and effectiveness of the developed algorithm, reaching half the error 
committed by the existing calibration-free correction algorithms proposed in the literature.
Conclusions: The developed technique provides highly accurate estimates of joint angles in several 
challenging real-world scenarios.
© 2024 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND 
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1. Introduction

Tracking the motion of human limbs has a fundamental role in 
human performance assessment, health, and rehabilitation moni-
toring applications [1–3]. Optical tracking systems have long been 
considered the gold standard for human motion analysis. However, 
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they need a carefully calibrated laboratory environment, making 
their application impractical outdoors, and are very sensitive to 
lighting and visual occlusion [4].

Wearable sensors, specifically Inertial Measurement Units
(IMUs), provide an exciting alternative since they enable data col-
lection in real-life conditions [5,6]. IMUs utilize a gyroscope to 
detect their orientation in space. In the ideal case of an error-
less gyroscope, this information alone would suffice to determine 
the changes in orientation of the IMU body. In practice, however, 
all gyroscopes are affected by more or less severe temporal drift, 
which must be compensated using information obtained from 
other sensors.

The IMUs that are typically used for motion analysis fuse, for 
this purpose, information from a MEMS gyroscope with the infor-
mation provided by multiaxial accelerometers and magnetometers, 
enclosed in a small and lightweight package. Several sensor fusion 
algorithms have been presented in the literature, see e.g., [7–15]. 
When properly tuned, they all tend to yield comparable results 
[16]. Even though the fusion strategies differ, these sensor fusion 
algorithms typically exploit the low-frequency (gravitational) ac-
celeration signal to correct roll and pitch angles, and the earth’s 
magnetic field data to correct the yaw angle. Persistent external 
accelerations and local magnetic disturbances, together with gy-
roscopic drift, are therefore the main sources of error [17]. The 
effect of magnetic disturbances in particular tends to dominate 
when IMUs are used to measure human activities that don’t in-
volve significant persistent acceleration of the subject.

To improve the accuracy of the orientation estimate in human 
motion-tracking, when multiple IMUs are used to track the orien-
tation of different body segments, it is possible to exploit kine-
matic models of the human body [18–20] to compensate for the 
error in one sensor’s orientation with the information provided by 
another sensor. In [5,21–23], the Authors have exploited the kine-
matic constraints of the joints (knee or elbow) to improve the joint 
angle estimation. Except for [5,22], the above studies focus on the 
analysis of the knee joint, which is a hinge joint with one degree of 
freedom. Furthermore, they describe full acquisition protocols and 
data fusion algorithms utilizing the measures coming from one or 
more IMUs.

In this paper, we target the flexion angle of the elbow joint, 
which is a two-degree-of-freedom loose-hinge joint [24], using 
a two-IMUs setup taken from [22]. Inspired by previous work 
[25], which improved elbow flexion angle estimation using joint 
anatomical constraints, we employ a comparable mathematical ex-
pression of the elbow kinematic constraints. We develop an error 
model of the orientation errors due to IMU misalignment with 
body segments and external disturbances. Subsequently, a recur-
sive filter is designed to estimate these errors, in the form of an 
Error State Extended Kalman Filter (ESEKF) with state constraints. 
One key innovation lies in our algorithm’s ability to enhance joint 
angle accuracy without the need to perform any sort of calibra-
tion motion before data collection. Moreover, unlike most exist-
ing methods, ours does not rely on the subject’s anthropometric 
measurements or precise alignment of the IMUs on the arm and 
can incorporate the subject’s carrying angle.2 This unique set of 
features allows seamless integration into existing data process-
ing pipelines (or application to previously acquired data) without 
altering the acquisition protocol, something that is not possible 
even with the best-performing and most flexible algorithms in the 
literature, such as [22]. This paper provides a detailed explana-
tion of our algorithm and evaluates its performance. To ensure a 
comprehensive assessment, we conducted tests in vivo, measuring 
elbow flexion angle on a human subject, and measuring the an-

2 see Sec. 2.1 for a definition.
2

gle between IMUs fixed on a rigid support at various calibrated 
angles. Our algorithm’s performance, both with and without in-
formation about the subject’s carrying angle, is compared against 
raw data and the postprocessing algorithm proposed in [25]. Im-
portantly, our approach is also validated against measurements 
acquired on a state-of-the-art passive-markers optical tracking sys-
tem, with markers placed according to the Lobo-Prat protocol com-
plying with the International Society of Biomechanics guidelines.

2. Material and methods

2.1. Joint angle model

The human elbow joint is a compound of the humeroulnar 
and humeroradial joints and of the proximal and distal radioul-
nar joints. Their aggregate function can be approximated as the 
composition of two one-degree-of-freedom hinge joints, the first 
allowing flexion/extension, the second pronation/supination [26]. 
Note that, as described for instance in [5], the longitudinal axis of 
the distal segment (the forearm), which coincides with the prona-
tion/supination rotation axis, is offset from the flexion/extension 
rotation plane. This offset angle is known as the carrying angle. 
At full extension, the carrying angle is known to vary between 
roughly 5 and 25 degrees [26,27], with differences between male 
and female, and between dominant and non-dominant arms. It 
changes also with the flexion angle, though the amount by which 
it changes is not well documented and depends on the considered 
definition of the carrying angle, which is itself not fully standard-
ized [27]. In this work, we approximate the flexion/extension de-
gree of freedom as a single hinge joint, and we assume that the 
carrying angle, defined as the angle between the longitudinal axis 
of the distal segment and the flexion/extension rotation plane, is 
constant. Referring to the proximal segment longitudinal axis as x1

and to the distal segment longitudinal axis as x2, we can define 
the elbow flexion angle, α, as

α � arccos

(
x�

1 x2

‖x1‖‖x2‖

)
. (1)

Furthermore, we assume that the proximal segment lays in the 
flexion/extension rotation plane so that the flexion angle (the angle 
between proximal and distal segments) coincides with the carry-
ing angle at full extension. This is consistent with the more com-
mon definition of the carrying angle [27], and provides a relatively 
simple way to measure it on a human subject by means of a go-
niometer.

2.2. Error model

Our algorithm assumes that the two IMUs are positioned as 
proposed in [22], by aligning their x axis with the corresponding 
body segment longitudinal axis. Referring to Fig. 1, Sensor1 is po-
sitioned on the upper arm and Sensor2 on the wrist. Sensor1 is 
positioned over the central third of the humerus, slightly poste-
rior to avoid additional errors due to the shoulder rotations and 
skin motion artifacts. Sensor2 is positioned over the distal, flat sur-
face of the radius and ulna, with the local x axis pointing towards 
the hand, to minimize soft tissue artifacts. Note that, with this po-
sitioning, the two sensors’ relative position is subject to both of 
the elbow’s degrees of freedom. With reference to Fig. 1, assuming 
that Sensor1 is worn so that its z-axis is (approximately) paral-
lel to the flexion/extension rotation axis, the angle between the 
x-axis of Sensor2, i.e., x2, and the z-axis of the upper Sensor1, 
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Fig. 1. Sensors and markers configurations on the subject.

i.e., z1, is equal to β , where 90 − β degrees is the carrying an-
gle. The assumption we made of constant carrying angle, can be 
then mathematically expressed by assuming that z1 and x2 are 
unit vectors, and imposing that the scalar product of the two vec-
tors (henceforth referred to as ε) is equal to

ε � z�
1 x2 = cos(β). (2)

The orientations of Sensor1 and Sensor2 are estimated at each time 
step by the IMU sensors fusion algorithms and are expressed as ro-
tation matrices with respect to the global frame. In particular, from 
now on, R1g expresses the orientation of Sensor1, and R2g the ori-
entation of Sensor2. Accordingly, equation (2) can be rewritten as:

ε = (R1g z)�R2g x = cos(β), (3)

where x �= [1 0 0]� , z
�= [0 0 1]� . In the considered scenario, two 

factors may contribute to the erroneous measurement of z1 and 
x2:

(E1) the misalignment of the IMU with the anatomical axis, or
(E2) sensor fusion errors in the matrices Rig .

We can correct the two sources of error using two kinds of correc-
tion matrices:

• For correction (E1), local correction matrices R1lc and R2lc are 
used to rotate vectors z and x within their respective reference 
frames.

• To address (E2) a global correction matrix Rc is employed to 
rotate the relative orientation of the reference frames of the 
two IMUs.

It is then possible to express the constraint (3) including all cor-
rections as

ε = (Rc R1g R1lc z)�R2g R2lcx = cos(β). (4)

The correction matrices Rc, R2lc are expressed in the Roll Pitch 
Yaw (RPY) representation, while R1lc is expressed in Yaw Pitch Roll 
(YPR):
3

Table 1
Elements of the state vector ξ of the ESEKF.

Correction angle Rotation axis

θ1 y1 axis in Sensor1 frame
ψ1 x1 axis in Sensor1 frame
θ2 y2 axis in Sensor2 frame
φ2 z2 axis in Sensor2 frame
θ y axis in global frame
φ z axis (vertical) in global frame
ψ x axis in global frame

R1lc =
⎡
⎣ cos θ1 sin θ1 sinψ1 sin θ1 cosψ1

0 cosψ1 − sinψ1
− sin θ1 cos θ1 sinψ1 cos θ1 cosψ1

⎤
⎦ ,

R2lc =
⎡
⎣cos θ2 cosφ2 − sin φ2 cosφ2 sin θ2

sinφ2 cos θ2 cosφ2 sinφ2 sin θ2
− sin θ2 0 cos θ2

⎤
⎦ ,

Rc =
[

cos θ cosφ cosφ sin θ sinψ − sinφ cosψ cosφ sin θ cosψ + sinφ sinψ

sinφ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cosφ sinψ

− sin θ cos θ sinψ cos θ cosψ

]

(5)

where ψ , θ , and φ are rotations around the IMU x, y, and z axis, 
respectively. Assuming that correction angles are small, the cho-
sen representations are well suited, since they have singularities 
when θ = π/2 and when θ = 3π/2, away from where our correc-
tion matrices are expected to operate. In particular, in (5), R1lc is 
the result of the combination of rotations around z1, y1, and x1
axis of Sensor1 in this order, and R2lc is the result of the combina-
tion of rotations around x2, y2, and z2 axis of Sensor2 in this order. 
The order in which the rotations in R1lc and R2lc are applied has 
been chosen to perform the first rotation of each reference frame 
around the axis it is applied to, i.e., z for Sensor1 and x for Sensor2
(see (3)). This representation allows us to get rid of the correction 
angle φ1 in R1lc , and ψ2 in R2lc , obtaining a simpler model with-
out loss of generality. By rotating the vectors z and x within their 
frames, the local correction matrices R1lc and R2lc have the effect 
of correcting the relative orientations of the IMUs with respect to 
the anatomical axes. The global correction matrix Rc , on the other 
hand, modifies the orientation of IMU 1 in the global frame. In 
the global frame, errors due to misalignment of an IMU with the 
anatomical axes are seen as rapidly changing signals, while sen-
sor fusion errors, which directly affect the IMU’s representation of 
the global frame, are slowly changing signals. The global correction 
matrix Rc is therefore more sensitive to the latter, and its contri-
bution is chiefly in correcting sensor fusion errors.

2.3. Error state extended Kalman filter design

As anticipated, we use an ESEKF to estimate the error angles 
that characterize the three correction matrices. A standard Ex-
tended Kalman Filter for sensor fusion is designed to estimate a 
nonlinear process’ state (e.g., the orientation and angular rates of 
the IMU) from the readings of the sensors (e.g., angular accelera-
tions from a MEMS gyroscope, orientations from accelerometer and 
magnetometer). An ESEKF instead is designed to estimate the error 
between such a process’ state and its true value. By estimating the 
error rather than the state, the ESEKF operates on a signal with 
lower-frequency dynamics. Additionally, acting on a small signal, 
its performance is less penalized by the process nonlinearity.

We designed an ESEKF with state constraints collecting the 
error angles in vector ξ �= [

θ1 ψ1 θ2 φ2 θ φ ψ
]� , whose 

meanings are reported in Table 1. The error dynamics model sub-
ject to the constraint coming from (4) therefore becomes
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ξk = ξk−1 + vk−1 (6a)

yk = g(ξk) + ηk
�= (Rc R̂1g R1lc z)�(R̂2g R2lcx) − cos(β) + ηk

(6b)

s.t. yk = 0 + ηk, (6c)

where subscript k is the time step, while v denotes the noise act-
ing on the state evolution (6a). Equations (6b) and (6c) together 
express constraint (4), with the small Gaussian noise η modeling 
deviations from our kinematic model. In (6b), we omitted the de-
pendence of the rotation matrices on k for the sake of conciseness. 
The ESEKF with state constraints is then designed as follows:
Prediction step:

ξ−
k = ξk−1,

P−
k = Pk−1 + Q ,

(7)

Correction step:

Kk = P−
k C T

k (Ck P−
k C T

k + R)−1,

ξk = ξ−
k + Kk(ζ − g(ξ−

k )), ζ
�= 0,

Pk = (I − KkCk)P−
k .

(8)

Here, P is the state error covariance matrix; Q is the process noise 
covariance matrix; R is the variance of η; C is obtained at every 

time step as ∂ g(ξ)
∂ξ

∣∣∣∣
ξ=ξ−

k

, where g(ξ) is defined in (6b), and K is 

the Kalman gain. Constant ζ represents the observation made at 
each step k of the process output yk . Imposing the observation 
equality ζ = 0 allows us to integrate the constraint (6c) in the filter 
dynamics.

Using the elements of ξk as angles in the correction matrices 
(5) we can finally correct the two IMUs’ rotation matrices as

R1corrected = Rc R̂1g R1lc,

R2corrected = R̂2g R2lc,
(9)

where we omitted the dependence of the matrices on k for clarity.

2.4. Experimental setup

To validate the IMU-based joint angle measurements, we fol-
lowed the typical procedure of comparing the results with those 
obtained from a passive-marker optical tracking system. This pro-
cedure is detailed in the following Test 3. Although optical tracking 
systems can precisely locate markers with sub-millimeter accuracy, 
joint angle estimates are inevitably affected by significant noise. 
The main sources of this noise are soft tissue artifacts [28] and 
errors resulting from imperfect alignment of markers with body 
segment axes. Therefore, to ensure a more reliable evaluation of 
the performance of our algorithm, we complemented this standard 
assessment with two further tests under conditions that eliminate 
the sources of inaccuracy present in optical tracking systems. Over-
all, we tested our algorithm in three different experimental setups 
detailed below.
Test 1: we evaluated the algorithm on a set of IMUs mounted on a 
wooden board at carefully calibrated angles. Six Xsens MTw IMUs 
(Xsens Technologies BV, Enschede, NL) were fixed on a wooden 
board as in Fig. 2. The orientation of each IMU was independently 
processed using XSens MT Manager 2021.4. Sensor1 was used to 
represent the sensor on the subject’s upper arm, while the oth-
ers represented the sensor on the forearm in 5 different positions. 
The angle between the x axis of Sensor1 and the x axis of each 
of the other sensors was measured with an electronic goniome-
ter to be of 0◦ , 30◦ , 45◦ , 60◦ , 90◦ , with a resolution of 0.1◦ . The 
board was then moved in space by hand in an irregular waving 
4

Fig. 2. First Test: Experimental set-up.

motion, ensuring that all axes explored the three degrees of free-
dom repeatedly. The orientation of each sensor was estimated by 
the Xsens Kalman Filter (XKF3) with a sampling rate of 100 Hz.

The proposed method was evaluated by comparing the results 
obtained by computing the joint angle, as expressed in (1),

1. using vectors x1 and x2 obtained from XKF3 without postpro-
cessing,

2. using the vectors obtained through the postprocessing algo-
rithm in [25],

3. using our postprocessing algorithm.

In the following, we refer to the three above methods of computa-
tion of the joint angle as NP (as No Postprocessing), LP (as Luinge 
Postprocessing), and EP (as ESEKF Postprocessing), respectively. 
When applying EP, we set β = 90 degrees, which corresponds to 
a carrying angle of 0 degrees. It is important to underline that 
having constant angles between IMUs during the tests did not give 
any unfair advantage to EP. Our algorithm, indeed, does not assume 
constant angles between sensors, and like the other two meth-
ods must obtain the angle measurement through the application 
of (1) to the time-varying estimates of x1 and x2. This test was 
carried out at the Leonardo Robotics Labs of Politecnico di Milano 
(www.deib .polimi .it /eng /lableo). The numerous robots, power lines, 
and metal structures in the lab generate significant magnetic inter-
ference and therefore provide a rather challenging environment for 
the IMUs.

Test 2: two of the same IMUs used in the previous experiment 
were worn by a subject on the right arm, positioned as in Fig. 1. 
The subject’s right arm carrying angle at full extension was es-
timated, using an electronic goniometer aligned with the axes of 
the proximal and distal segments, to be equal to 16.4 degrees. The 
subject was asked to fully extend the elbow, and move the arm 
horizontally and vertically while maintaining the elbow fully ex-
tended. As in the first test, the orientation of each IMU was first 
computed using XKF3 and LP. We then tested our postprocessing 
algorithm with a carrying angle equal to 16.4 degrees (β = 73.6
degrees), as well as 0 (β = 90 degrees) to simulate the case where 
the subject anthropometry is not available at the time of data pro-
cessing. We refer to the second postprocessing case as EP and to 
the first as EPSS, where SS stands for subject-specific. The test was 

http://www.deib.polimi.it/eng/lableo
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Fig. 3. Trajectory of α and ξ for Sensor1 and Sensor2 in Test 1, when the latter is placed at a 90 degrees angle.
repeated 4 times, and the measurement error was defined as the 
difference between the measured angle and the ground truth of 
16.4 degrees since at full extension the elbow angle corresponds 
to the carrying angle. This test was carried out once again at the 
Leonardo Robotics Labs of Politecnico di Milano. The purpose of 
the test was to evaluate the effects of skin and soft-tissue artifacts, 
and the impact of the IMUs placement on a human arm, on the 
performance of the three methods, without the additional distur-
bances related to the optical tracking system.

Test 3: As the final test we performed a standard comparison of 
the four postprocessing methods, NP, LP, EP, and EPSS, against the 
measurement obtained from an optical tracking system. The same 
subject of Test 2 wore two IMUs on the right arm, positioned as 
in the second test, and was equipped with 6 retroreflective mark-
ers, positioned on the right arm on the posterior right shoulder, 
anterior right shoulder, lateral prominence of the elbow, medial 
prominence of the elbow, radial styloid (lateral prominence of the 
wrist), and ulnar styloid (medial prominence of the wrist), ac-
cording to the protocol described in [29] (see Fig. 1), complying 
with the guidelines of the International Society of Biomechanics. 
Note that the protocol utilizes 26 markers located on both arms 
and on the torso. Since for this study we only needed to mea-
sure flexion/extension of the right elbow we used a subset of the 
full marker set. The protocol utilizes pairs of markers positioned 
on the measured joints to define a segment through the joint in-
stantaneous center of rotation. The midpoint of the segment then 
approximates the center of rotation. The motion of the markers 
was acquired using a SMART DX 400 (BTS spa, Italy) optical track-
ing system with 8 cameras acquiring at 100 Hz. Marker trajectories 
were processed in Smart Analyzer (BTS spa, Italy). The subject ex-
ecuted 12 flexion/extension movements with her right arm while 
sitting on a stool. The laboratory where the optical tracking system 
is located has very few sources of magnetic disturbance and was, 
therefore, less challenging for the IMUs magnetometers.

In all the tests, we set matrix Q of EP and EPSS (see (7)) to a 
diagonal matrix with diagonal elements equal to [0.1015, 0.0202, 
0.0369, 0.0530, 0.1278, 3.6109, 0.0308], while R = 1. In LP, the di-
agonal matrix Q had diagonal elements [1.42, 5.87, 5.58, 1.10, 6.20, 
5.99] and R = 0.175. The elements of the Q matrices were opti-
mized, for each of the postprocessing algorithms, to minimize the 
maximum RMS error over all performed tests. The value of R in LP 
was chosen according to [7].

3. Results

The experiment in Test 1 consisted of a single trial lasting about 
120 seconds and the full-time series was used in the analysis. The 
trajectory of the ESEKF state ξ , in the lower panel of Fig. 3, shows 
5

Table 2
Summary statistics of Test 1. For mean values, the standard devi-
ation is reported between parentheses. For median values, lower 
and upper quartiles are reported between brackets. Statistics re-
fer to the error computed over the union of the 5 different an-
gles.

NP LP EP

RMS [deg] 8.6 7.4 2.2
Mean [deg] 1.6 (8.5) 0.9 (7.4) 0.5 (2.1)
Median [deg] 1.2 [-0.2,4.9] 1.0 [-0.2,3.8] 0.4 [0.1,1.0]

that the filter is correcting angle φ, which corresponds to a rota-
tion of the IMUs global frame on the horizontal plane caused, e.g., 
by magnetic disturbances. Correction to all other angles is negligi-
ble, as expected given the precise placement of the IMUs on the 
board. The angle α computed with NP and LP under the effect of 
the disturbance is quite noisy (top panel in Fig. 3), while its value 
remains close to the correct value of (90◦ for the pair of sensors 
represented in the figure) when computed with EP. The median 
and the upper and lower quartiles of the error between the mea-
sured angle and the ground truth are reported in Fig. 4 for each 
of the 5 pairs of IMUs. For all the considered pairs of IMUs, post-
processing with EP resulted in a significantly smaller median error 
and smaller error scattering. Summary statistics of the experiment 
(Table 2), computed by aggregating the error on the measurement 
of the 5 angles in a single time series, confirm that the error is 
significantly reduced both in RMS, mean, and median.

The experiment in Test 2 was repeated 3 times. In this case, the 
alignment of the IMUs with the anatomical axes was inevitably im-
perfect. As a consequence, multiple elements of ξ both for EP and 
EPSS settle on nonzero values (Fig. 5). The trials lasted about 120
seconds and the first 16 seconds were excluded from the time se-
ries to allow the state of EP and EPSS to settle. In this case, the 
error is defined as the difference between the measured angle and 
the subject carrying angle (16.4 degrees). LP and EP, which as-
sume a carrying angle equal to 0, perform poorly and degrade the 
measure with respect to NP (Fig. 6). By looking at the aggregate 
statistics from the four trials, in Table 3, we see that EPSS, on the 
other hand, utilizing a more correct model improves both mean 
and median error. However, soft tissue artifacts and the more com-
plex kinematics of the human arm, with respect to the simplified 
geometry assumed in Test 1, do not allow EPSS to achieve the same 
performance as EP in Test 1. Moreover, a larger variance affects the 
RMS error, which is slightly worse than with NP.

Finally, the experiment in Test 3 was repeated 8 times. Each trial 
lasted about 60 seconds. The subject remained steady for about 16 
seconds before beginning the flexion/extension drill, which lasted 
about 30 seconds. Imperfect alignment of the IMUs and soft-tissue 
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Fig. 4. Results of Test 1: error on the angle measured between Sensor1 and Sensor2. The central mark is the median, the boxes enclose the lower and upper quartiles.

Fig. 5. Trajectory of ξ during Test 2.

Fig. 6. Results of Test 2: error between the angle returned by the 4 computation methods, and the subject’s flexion/extension angle, fixed at 16.4 degrees. Boxes represented 
as in Fig. 4.

Table 3
Summary statistics of Test 2. For mean values, the standard deviation is reported between 
parentheses. For median values, lower and upper quartiles are reported between brackets. 
Statistics refer to the error computed over the union of the 3 trials.

NP LP EP EPSS

RMS [deg] 2.8 12.8 9.6 2.9
Mean [deg] -2.5 (1.2) -12.5 (8.8) -9.4 (6.4) 2.5 (5.1)
Median [deg] -2.7 [-3.6,-2.1] -12.6 [-14.7,-10.7] -9.8 [-10.9,-8.9] 1.8 [1.4,2.3]
6
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Fig. 7. Trajectory of ξ during Test 3.

Fig. 8. Results of Test 3: error between the angle returned by the 4 computation methods, and the subject’s flexion angle as measured with the optical tracking system. Boxes 
represented as in Fig. 4.

Table 4
Summary statistics of Test 3. For mean values, the standard deviation is reported 
between parentheses. For median values, lower and upper quartiles are reported be-
tween brackets. Statistics refer to the error computed over the union of the 8 trials.

NP LP EP EPSS

RMS [deg] 15.4 11.9 6.5 6.0

Mean [deg] 15.2 (2.1) 7.9 (8.8) 1.0 (6.43) 3.1 (5.1)

Median [deg] 15.3 [13.7,16.6] 6.3 [0.4,17.2] 0.7 [-3.5,4.8] 2.9 [-0.7,6.6]
artifacts induced by the motion of the arm this time excite most 
of the elements of state ξ (Fig. 7), which starts to settle onto its 
asymptotic value only after the subject starts moving (about 16 
seconds from the beginning of the experiment in Fig. 7). When an-
alyzing the error performance of the different algorithms therefore 
we excluded the first 16 seconds of data. Results are consistent 
among the 8 trials (Fig. 8), and in all cases, EPSS improves the er-
ror performance with respect to NP and LP. We note that in this 
test EP performed better than in Test 2, and achieved comparable 
results to EPSS. A more accurate assessment is reported in Table 4, 
which considers the statistics of the aggregate time series from the 
8 trials. While both EP and EPSS perform much better than NP and 
LP, the mean and median values of EP are slightly better than those 
of EPSS, while the RMS errors are comparable.
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4. Discussion

The tests were designed to evaluate different conditions under 
which the postprocessing algorithm could operate. Test 1 allowed 
us to evaluate the performance of the algorithms in the absence of 
soft tissue artifacts, in a scenario where the carrying angle con-
straint of 0 is satisfied by construction, and evaluate the error 
against a reference that was characterized with extreme precision. 
This is, in other words, an accurate assessment of the best-case 
performance of the three algorithms EP, LP, and NP, when the 
kinematics of the process coincides with those assumed by the 
postprocessing. Fig. 4 clearly shows an improvement of EP over 
LP and NP. When the kinematic model is correct EP can achieve 
sub-degree mean and median error. Note that, with EP, we achieve 
an RMS error of 2.2 degrees despite the significant noise affecting 
the original signal, testified by the large error obtained with NP. 
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This is in line with the best results reported by competing algo-
rithms in the literature [16], with the advantage, here, of having a 
purely postprocessing algorithm.

In contrast, Test 2 was designed to evaluate the algorithm per-
formance in the presence of soft-tissue artifacts and with the com-
plexity of the human-arm geometry (but limiting the effects of 
elbow kinematics) while operating under similar electromagnetic 
and geometric conditions as in Test 1. Both LP and EP, being based 
on an erroneous model where the carrying angle is null, introduce 
an unnecessary bias in the measured angle, thus deteriorating the 
error performance with respect to the unprocessed signal returned 
by NP. On the other hand, EPSS, which utilizes a correct model 
of the carrying angle, provides a significant improvement, achiev-
ing a mean error of 2.3 degrees, improving significantly over LP. 
Note that, while the subject was instructed to keep the arm fully 
extended throughout the test, small variations of the elbow angle 
during the experiment were still likely due to the mechanical cou-
pling between the degrees of freedom of the elbow. This probably 
explains the reduced performance of EPSS in Test 2 with respect to 
EP in Test 1.

Finally, in Test 3 we tested the proposed method with the sub-
ject executing a standard flexion/extension exercise, assessing the 
error against what to date is considered the gold standard for 
human motion analysis. Results are affected both by soft-tissue ar-
tifacts and, to some extent, by the imperfect positioning of the 
retroreflective markers with respect to the instantaneous centers 
of rotation of the shoulder and arm. Table 4 shows again that EP 
can improve the angle estimation compared with NP and LP, re-
ducing mean and median error by almost an order of magnitude. 
In this case, adding the subject-specific carrying angle provides 
only a marginal improvement in the RMS error, and slightly de-
teriorates error mean and median values. The fact that EP, with a 
less precise kinematic model, performs comparably to EPSS might 
seem surprising. One should however consider that in the exper-
imental conditions of Test 2, EP had no means to distinguish the 
presence of a nonzero carrying angle from an error in the align-
ment of the IMUs to the body segments longitudinal axes. This 
explains the large error of EP in this test. During Test 3 instead, 
the subject was moving her arm both around the flexion/exten-
sion and, inevitably to some extent, the pronation/supination axes. 
The corresponding trajectories of the two IMUs in this case are 
geometrically distinct from those that would have been obtained 
with a null carrying angle. This is why the performances of EP and 
EPSS are in this case more similar. We can therefore conclude that 
EPSS is more robust than EP in assessing the elbow angle even 
in atypical motion such as in Test 2, but not necessarily better in 
more typical motion such as in Test 3. In our comparison with re-
cent literature, it is worth noting that other studies have obtained 
comparable results. For example, the study presented by [5] ob-
tained results similar to ours, but required a detailed calibration 
procedure prior to data acquisition, making it impractical for post-
processing. This is also true for [22] in which the calibration does 
indeed occur autonomously, but the subject must assume a “zero 
position” for this to happen. Our postprocessing method can in-
stead improve measurement accuracy without the need for initial 
calibration, without requiring the subject to perform a zero po-
sition, nor knowledge of subject-specific parameters. Therefore, it 
can be applied to a dataset posterior to its acquisition, even if the 
protocol was not designed for postprocessing, or it can be inserted 
in a data-processing pipeline without any modification to the ac-
quisition protocol. Note that, in Test 2 and Test 3, subjects were not 
instructed to move at a specific speed. Very fast motion might, 
however, affect the performance of our and competing algorithms. 
This remains a direction for future research.
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5. Conclusion

The postprocessing algorithm presented in this work does not 
require knowledge of the anthropometric parameters or calibra-
tion. Therefore, it can be used to clean previously acquired data 
without any modification to the acquisition protocol. Our tests 
show that the algorithm can reduce mean and median error in 
the computation of the elbow flexion/extension angle by almost 
an order of magnitude under typical conditions (Test 3), even with-
out information on the carrying angle. This information is however 
important to reduce the error under atypical conditions (Test 2) e.g. 
when the subject is holding the arm fully extended.
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